

# A-level MATHEMATICS

Unit Mechanics 3

Wednesday 8 June 2016

Morning

Time allowed: 1 hour 30 minutes

# Materials

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

# Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take  $g = 9.8 \text{ m s}^{-2}$ , unless stated otherwise.

# Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

# Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.



- 1 At a firing range, a man holds a gun and fires a bullet horizontally. The bullet is fired with a horizontal velocity of  $400 \,\mathrm{m\,s^{-1}}$ . The mass of the gun is 1.5 kg and the mass of the bullet is 30 grams.
  - (a) Find the speed of recoil of the gun.

[2 marks]

Find the magnitude of the impulse exerted by the man on the gun in bringing the gun (b) to rest after the bullet is fired.

[2 marks]

2 A lunar mapping satellite of mass  $m_1$  measured in kg is in an elliptic orbit around the moon, which has mass  $m_2$  measured in kg. The effective potential, E, of the satellite is given by

$$E = \frac{K^2}{2m_1r^2} - \frac{Gm_1m_2}{r}$$

where r measured in metres is the distance of the satellite from the moon,  $G~{\rm Nm^2 kg^{-2}}$ is the universal gravitational constant, and K is the angular momentum of the satellite.

By using dimensional analysis, find the dimensions of:

- (a) Ε,
- (b) Κ.
- A ball is projected from a point O on horizontal ground with speed  $14 \,\mathrm{m\,s^{-1}}$  at an 3 angle of elevation 30° above the horizontal. The ball travels in a vertical plane through the point O and hits a point Q on a plane which is inclined at  $45^{\circ}$  to the horizontal. The point O is 6 metres from P, the foot of the inclined plane, as shown in the diagram. The points O, P and Q lie in the same vertical plane. The line PQ is a line of greatest slope of the inclined plane.





[3 marks]

[3 marks]

(a) During its flight, the horizontal and upward vertical distances of the ball from O are x metres and y metres respectively.

Show that *x* and *y* satisfy the equation

$$y = x \frac{\sqrt{3}}{3} - \frac{x^2}{30}$$
  
Use  $\cos 30^\circ = \frac{\sqrt{3}}{2}$  and  $\tan 30^\circ = \frac{\sqrt{3}}{3}$ .

(b) Find the distance *PQ*.

**4** A smooth uniform sphere A, of mass m, is moving with velocity 8u in a straight line on a smooth horizontal table. A smooth uniform sphere B, of mass 4m, has the same radius as A and is moving on the table with velocity u.



The sphere A collides directly with the sphere B.

The coefficient of restitution between A and B is e.

(a) (i) Find, in terms of *u* and *e*, the velocities of *A* and *B* immediately after the collision.

# [6 marks]

(ii) The direction of motion of A is reversed by the collision. Show that e > a, where a is a constant to be determined.

#### [2 marks]

(b) Subsequently, *B* collides with a fixed smooth vertical wall which is at right angles to the direction of motion of *A* and *B*. The coefficient of restitution between *B* and the wall is  $\frac{2}{3}$ .

The sphere B collides with A again after rebounding from the wall.

Show that e < b, where b is a constant to be determined.

# [3 marks]

(c) Given that  $e = \frac{4}{7}$ , find, in terms of *m* and *u*, the magnitude of the impulse exerted on *B* by the wall.

[3 marks]



Turn over ▶

[5 marks]

[7 marks]

**5** A ball is projected from a point *O* above a smooth plane which is inclined at an angle of  $20^{\circ}$  to the horizontal. The point *O* is at a perpendicular distance of 1 m from the inclined plane. The ball is projected with velocity  $22 \text{ m s}^{-1}$  at an angle of  $70^{\circ}$  above the **horizontal**. The motion of the ball is in a vertical plane containing a line of greatest slope of the inclined plane. The ball strikes the inclined plane for the first time at a point *A*.



(a) (i) Find the time taken by the ball to travel from O to A.

[4 marks]

(ii) Find the components of the velocity of the ball, parallel and perpendicular to the inclined plane, as it strikes the plane at A.

[4 marks]

(b) After striking A, the ball rebounds and strikes the plane for a second time at a point further up than A.

The coefficient of restitution between the ball and the inclined plane is e.

Show that e < k, where k is a constant to be determined.

[4 marks]



6 In this question use  $\cos 30^\circ = \sin 60^\circ = \frac{\sqrt{3}}{2}$ .

A smooth spherical ball, A, is moving with speed u in a straight line on a smooth horizontal table when it hits an identical ball, B, which is at rest on the table. Just before the collision, the direction of motion of A is parallel to a fixed smooth vertical wall. At the instant of collision, the line of centres of A and B makes an angle of  $60^{\circ}$  with the wall, as shown in the diagram.



The coefficient of restitution between A and B is e.

(a) Show that the speed of *B* immediately after the collision is  $\frac{1}{4}u(1+e)$  and find, in terms of *u* and *e*, the components of the velocity of *A*, parallel and perpendicular to the line of centres, immediately after the collision.

#### [7 marks]

(b) Subsequently, *B* collides with the wall. After colliding with the wall, the direction of motion of *B* is parallel to the direction of motion of *A* after its collision with *B*.

Show that the coefficient of restitution between *B* and the wall is  $\frac{1+e}{7-e}$ . [7 marks]



PB/Jun16/MM03

- 7 A quad-bike, a truck and a car are moving on a large, open, horizontal surface in a desert plain. Relative to the quad-bike, which is travelling due west at its maximum speed of  $10 \,\mathrm{m\,s^{-1}}$ , the truck is moving on a bearing of  $340^\circ$ . Relative to the car, which is travelling due east at a speed of  $15 \,\mathrm{m\,s^{-1}}$ , the truck is moving on a bearing of  $300^\circ$ .
  - (a) Show that the speed of the truck is approximately  $24.7 \,\mathrm{m \, s^{-1}}$  and that it is moving on a bearing of  $318^\circ$ , correct to the nearest degree.

#### [8 marks]

(b) At the instant when the truck is at a distance of 400 metres from the quad-bike, the bearing of the truck from the quad-bike is  $060^{\circ}$ . The truck continues to move with the same velocity as in part (a). The quad-bike continues to move at a speed of  $10 \,\mathrm{m\,s^{-1}}$ .

Find the bearing, to the nearest degree, on which the quad-bike should travel in order to approach the truck as closely as possible.

[5 marks]

#### Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.



| Μ             | mark is for method                                         |
|---------------|------------------------------------------------------------|
| m or dM       | mark is dependent on one or more M marks and is for method |
| А             | mark is dependent on M or m marks and is for accuracy      |
| В             | mark is independent of M or m marks and is for method and  |
|               | accuracy                                                   |
| E             | mark is for explanation                                    |
| or ft or F    | follow through from previous incorrect result              |
| CAO           | correct answer only                                        |
| CSO           | correct solution only                                      |
| AWFW          | anything which falls within                                |
| AWRT          | anything which rounds to                                   |
| ACF           | any correct form                                           |
| AG            | answer given                                               |
| SC            | special case                                               |
| OE            | or equivalent                                              |
| A2,1          | 2 or 1 (or 0) accuracy marks                               |
| – <i>x</i> EE | deduct x marks for each error                              |
| NMS           | no method shown                                            |
| PI            | possibly implied                                           |
| SCA           | substantially correct approach                             |
| С             | candidate                                                  |
| sf            | significant figure(s)                                      |
| dp            | decimal place(s)                                           |

#### Key to mark scheme abbreviations

#### **No Method Shown**

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

#### Otherwise we require evidence of a correct method for any marks to be awarded.

| Q     | Solution                                       | Mark | Total | Comment                                                                       |
|-------|------------------------------------------------|------|-------|-------------------------------------------------------------------------------|
| 1 (a) | CLM:<br>1.5(0) + 0.03(0) = 1.5(-v) + 0.03(400) | M1   |       | M1: Correct terms, allow sign errors. OE, Condone                             |
| (b)   | v = 8 ( ms <sup>-1</sup> ) OE                  | A1   | 2     | the omission of the zero<br>terms<br>A1: CAO                                  |
|       | I = 1.5(8) - 1.5(0)                            | M1   |       | M1: Seeing their <i>v</i><br>multiplied by 1.5 and<br>condone the omission of |
|       | <i>I</i> = 12 ( Ns)                            | A1   | 2     | the zero term<br>A1: CAO, must be positive.                                   |
|       |                                                |      |       |                                                                               |
|       |                                                |      |       |                                                                               |
|       | Total                                          |      | 4     |                                                                               |
|       |                                                |      |       |                                                                               |

| Q     | Solution                                                                                                                               | Mark      | Total | Comment                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 2 (a) | $\begin{bmatrix} E \end{bmatrix} = \begin{bmatrix} \frac{Gm_1m_2}{r} \end{bmatrix}$ $= MLT^{-2}L^2M^{-2}MML^{-1}$                      | M1<br>dM1 |       | M1: Working with the 2 <sup>nd</sup><br>term in the expression<br>dM1: Correct unsimplified<br>expression                       |
|       | = ML <sup>2</sup> T <sup>-2</sup>                                                                                                      | A1        | 3     | A1: CAO                                                                                                                         |
| (b)   | $\begin{bmatrix} \frac{K^2}{2m_1r^2} \end{bmatrix} = ML^2T^{-2}$ $\begin{bmatrix} K^2 \end{bmatrix} = ML^2ML^2T^{-2}$ $= M^2L^4T^{-2}$ | M1<br>A1  |       | M1: Working with their<br>answer to (a) and the first<br>term of the expression<br>A1: Correct dimensions for<br>K <sup>2</sup> |
|       | $[K] = ML^2 T^{-1}$                                                                                                                    | A1        | 3     | A1:CAO                                                                                                                          |
|       | Total                                                                                                                                  |           | 6     |                                                                                                                                 |

| Q    | Solution                                                                                                                  | Mark | Total | Comment                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------|------|-------|---------------------------------------------------------|
| 3(a) | $x = 14\cos 30^{\circ} t$                                                                                                 | B1   |       | B1: Correct<br>horizontal eqn.                          |
|      | $y = 14\sin 30^{\circ}t - \frac{1}{2}gt^{2}$                                                                              | B1   |       | B1: Correct vertical eqn.                               |
|      | $t = \frac{x}{14\cos 30^{\circ}}$                                                                                         | M1   |       | M1: Making <i>t</i> the subject of <i>x</i>             |
|      | $y = 14\sin 30^{\circ} \times \frac{x}{14\cos 30^{\circ}} - \frac{1}{2}(9.8)\left(\frac{x}{14\cos 30^{\circ}}\right)^{2}$ | dM1  |       | dM1:Elimination<br>of <i>t</i> from their <i>y</i>      |
|      | $y = x \tan 30^{\circ} - \frac{x^2}{40 \cos^2 30^{\circ}}$                                                                |      |       |                                                         |
|      | $y = \frac{x\sqrt{3}}{3} - \frac{x^2}{30}$                                                                                | A1   |       | A1: CSO , AG                                            |
| (b)  |                                                                                                                           |      | 5     | above final<br>answer, OE                               |
| (d)  | y = x - 6                                                                                                                 | M1   |       | M1: For seeing $y=x\pm 6$                               |
|      | $x - 6 = \frac{x\sqrt{3}}{3} - \frac{x^2}{30}$                                                                            | dM1  |       | dM1: Substituting                                       |
|      | $x^2 + (30 - 10\sqrt{3})x - 180 = 0$                                                                                      | A1   |       | x±6 into the given<br>eqn.<br>A1: Correct<br>simplified |
|      | $x = \frac{-(30 - 10\sqrt{3}) \pm \sqrt{(30 - 10\sqrt{3})^2 - 4 \times 1(-180)}}{2 \times 1}$                             | dM1  |       | quadratic<br>dM1: Solving<br>quadratic                  |
|      | x = 8.50<br>( $x = -21.2$ or exact equivalent not needed)                                                                 | A1   |       | A1: CAO, accept<br>8.5 or AWRT                          |
|      | $PO = \frac{8.499 - 6}{100}$                                                                                              | dM1  |       | 8.50                                                    |
|      | $cos 45^{\circ}$                                                                                                          |      |       | dM1: Correct                                            |
|      | $PO = 3.53$ or $\frac{5\sqrt{2}}{2}$ (m)                                                                                  |      |       | exp. for PQ. FT                                         |
|      | $12 - 3.55$ or $\frac{1}{2}$ (m)                                                                                          | A1   |       |                                                         |
|      |                                                                                                                           |      | 7     | A1: CAO, AWRT<br>3.53 or exact<br>value, allow 3.54     |
|      |                                                                                                                           |      |       |                                                         |
|      | Total                                                                                                                     |      | 12    |                                                         |

| Alternative | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mark | Total | Comment                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|---------------------------------------------------------|
| (0)         | Let $PO = d$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |                                                         |
|             | $x = 6 + d\cos 45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1   |       | M1:Expression                                           |
|             | $y = d \sin 45^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1   |       | of <i>d</i> .<br>M1:Expression<br>for <i>y</i> in terms |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1   |       | A1: Both<br>correct                                     |
|             | $d\sin 45^{\circ} = (6 + d\cos 45^{\circ})\tan 30^{\circ} - \frac{(6 + d\cos 45^{\circ})^2}{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dM1  |       | dM1:<br>Substituting<br>into given<br>expression        |
|             | $d^{2}\cos^{2} 45^{\circ} + (30\sin 45^{\circ} - 30\cos 45^{\circ}\tan 30^{\circ} + 12\cos 45^{\circ})d - (180\tan 30^{\circ} - 36) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1   |       | A1: Correct<br>simplified<br>quadratic                  |
|             | $d = \frac{-(30\sin 45^{\circ} - 30\cos 45^{\circ}\tan 30^{\circ} + 12\cos 45^{\circ})}{2\cos^{2} 45^{\circ}} \pm \sqrt{(30\sin 45^{\circ} - 30\cos 45^{\circ}\tan 30^{\circ} + 12\cos 45^{\circ})^{2} - (30\cos 45^{\circ})^{2} $ | dM1  |       | dM1: Solution<br>of their<br>quadratic eqn.             |
|             | $\frac{1}{d} = 3.53 \mathrm{m}$ (Allow 3.54 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1   |       | A1: CAO,<br>AWRT 3.53 or<br>exact value,<br>allow 3.54  |

| Q        | Solution                                                                                                                                               | Mark     | Total | Comment                                                                                              |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------------------------------------------------------------------------------------------------|
| 4 (a)(i) | $8mu + 4mu = mv_A + 4mv_B$ OE                                                                                                                          | M1 A1    |       | M1: Four non-zero<br>momentum terms,<br>A1: Correct eqn.                                             |
|          | $7eu = v_B - v_A$ OE                                                                                                                                   | M1 A1    |       | M1: Eqn using <i>e</i> .<br>Allow sign errors.                                                       |
|          | $v_B = \frac{u}{5} (12 + 7e) \qquad \text{OE}$                                                                                                         | A1       |       | A1: Correct eqn.<br>A1: Correct vel of <i>B</i>                                                      |
|          | $v_A = \frac{4u}{5} (3 - 7e) \qquad \qquad OE$                                                                                                         | A1       | 6     | A1: Correct vel of A                                                                                 |
| (ii)     | $\frac{4u}{5}(3-7e) < 0$                                                                                                                               | M1       |       | M1: Their vel of <i>A</i> <0                                                                         |
|          | $e > \frac{3}{7}$                                                                                                                                      | A1       | 2     | A1: CAO, accept<br>AWRT 0.429                                                                        |
| (b)      | $\frac{u}{5}(12+7e) \times \frac{2}{3} > -\frac{4u}{5}(3-7e)$                                                                                          | B1<br>M1 |       | B1: Correct rebound<br>speed of <i>B</i><br>M1: Correct                                              |
|          | $e < \frac{6}{7}$                                                                                                                                      | A1       | 3     | A1: CAO, AWRT<br>0.857                                                                               |
| (c)      | $4m \times \frac{u}{5} \left( 12 + 7 \times \frac{4}{7} \right) + 4m \times \frac{u}{5} \left( 12 + 7 \times \frac{4}{7} \right) \times \frac{2}{3} =$ | M1 A1    |       | M1: Two correct<br>momentum terms,<br>allow sign errors.<br>A1: Correct<br>expression for<br>impulse |
|          | $\frac{64}{3}mu$ or $21.3mu$                                                                                                                           | A1       |       | A1: CAO (Must be positive)                                                                           |
|          |                                                                                                                                                        |          | 3     |                                                                                                      |
|          | Total                                                                                                                                                  |          | 14    |                                                                                                      |

| Q        | Solution                                                                                                                                                                                                                                                                                          | Mark            | Total | Comment                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
| 5 (a)(i) | $-1 = 22\sin 50^{\circ} t - \frac{1}{2}g\cos 20^{\circ} t^{2}$                                                                                                                                                                                                                                    | M1<br>A1        |       | M1: Perpendicular<br>eqn with correct<br>terms<br>A1: Correct<br>equation                                                          |
| (ii)     | $\frac{1}{2}g\cos 20^{\circ}t^{2} - 22\sin 50^{\circ}t - 1 = 0$ $t = \frac{22\sin 50^{\circ} \pm \sqrt{(-22\sin 50^{\circ})^{2} - 4(\frac{1}{2}g\cos 20^{\circ})(-1)}}{2(\frac{1}{2}g\cos 20^{\circ})}$ $t = 3.7185 \text{ or } 3.719$ $\dot{x} = 22\cos 50^{\circ} - 9.8\sin 20^{\circ}(3.7185)$ | dM1<br>A1<br>M1 | 4     | dM1:Solution of<br>their 3-term<br>quadratic eqn.<br>A1: CAO, AWRT<br>3.72<br>M1: Parallel<br>component of vel.<br>with their time |
|          | $\dot{x} = 1.678 \text{ ms}^{-1}$                                                                                                                                                                                                                                                                 | A1              | 4     | A1: Correct<br>component,<br>accept AWRT<br>1.68                                                                                   |
|          | $\dot{y} = 22 \sin 50^{\circ} - 9.8 \cos 20^{\circ} (3.7185)$<br>$\dot{y} = 17.39 \text{ ms}^{-1}$                                                                                                                                                                                                | M1<br>A1        |       | M1: Perpendicular<br>component of vel.<br>with their time<br>A1: Correct                                                           |
| (b)      | <i>v</i><br><i>A</i><br>(20°                                                                                                                                                                                                                                                                      |                 |       | component,<br>accept AWRT<br>-17.4                                                                                                 |
|          | $\gamma < 90^{\circ} - 20^{\circ}$                                                                                                                                                                                                                                                                | B1              |       | B1: Seeing 90-20<br>or 70                                                                                                          |
|          | $\frac{17.39e}{1.678} < \tan(90^\circ - 20^\circ)$                                                                                                                                                                                                                                                | B1F<br>M1       |       | B1F: Multiplying<br>their vertical<br>component by <i>e</i><br>M1: Correct<br>inequality                                           |
|          | <b>e</b> < 0.265                                                                                                                                                                                                                                                                                  | A1              | 4     | A1: CAO, accept<br>AWRT 0.265                                                                                                      |
|          | Total                                                                                                                                                                                                                                                                                             |                 | 12    |                                                                                                                                    |

| Q     | Solution                                                                                                                                                                                     | Mark     | Total | Comment                                                       |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|---------------------------------------------------------------|--|
| 6 (a) | Along the line of centres:                                                                                                                                                                   |          |       |                                                               |  |
|       | CLM: $u\cos 60^\circ = v_A + v_B$ OE                                                                                                                                                         | M1       |       | M1: Four non-<br>zero momentum<br>terms,                      |  |
|       |                                                                                                                                                                                              | A1       |       | A1: Correct eqn.                                              |  |
|       | <b>Restitution</b> : $eu\cos 60^\circ = v_B - v_A$                                                                                                                                           | M1       |       | M1: Eqn using <i>e</i> .<br>Allow sign                        |  |
|       | $2v_B = (1+e)u\cos 60^\circ \qquad \qquad OE$                                                                                                                                                | A1       |       | A1: Correct eqn.                                              |  |
|       | $v_B = \frac{1}{4}u(1+e)$                                                                                                                                                                    | A1       |       | A1: Correct vel<br>of B (AG) from                             |  |
|       | $v_A = \frac{1}{4}u(1-e) \qquad \qquad OE$                                                                                                                                                   | A1       |       | A1: Correct vel                                               |  |
| (b)   | Perpendicular to line of centres : $v'_A = u \cos 30^\circ$ OE                                                                                                                               | B1       | 7     | B1: Correct perpend. comp.                                    |  |
|       | $\checkmark v_A \cos 60^\circ + u \cos^2 30^\circ  (A) \qquad \qquad$ | M1<br>A1 |       | M1:<br>Components of<br>A parallel & perp                     |  |
|       | $u\cos 30^\circ \cos 60^\circ - v_A \cos 30^\circ \checkmark$                                                                                                                                |          |       | to the wall<br>A1: Both correct                               |  |
|       | $v_B \cos 60^\circ$ B Wall                                                                                                                                                                   | M1       |       | M1:<br>Components of<br><i>B</i> parallel & perp              |  |
|       | $e'v_B \sin 60^\circ$                                                                                                                                                                        | A1       |       | to the wall<br>A1: Both correct<br>AG above line<br>oe needed |  |
|       | $\frac{u\cos 30^{\circ}\cos 60^{\circ} - v_{A}\cos 30^{\circ}}{v_{A}\cos 60^{\circ} + u\cos^{2} 30^{\circ}} = \frac{e'v_{B}\sin 60^{\circ}}{v_{B}\cos 60^{\circ}}$                           | dM1      |       | dM1: Equal ratios used to                                     |  |
|       | $\frac{u \times \frac{\sqrt{3}}{2} \times \frac{1}{2} - \frac{1}{4}u(1-e) \times \frac{\sqrt{3}}{2}}{(\sqrt{2})^2} = \frac{e' \times \frac{\sqrt{3}}{2}}{1}$                                 | A1       |       | create equation<br>A1: Correct<br>equation                    |  |
|       | $\frac{1}{4}u(1-e) \times \frac{1}{2} + u\left(\frac{\sqrt{3}}{2}\right) \qquad \frac{1}{2}$                                                                                                 |          |       |                                                               |  |
|       | $e' = \frac{u - eu + 6u}{u - eu + 6u}$ $e' = \frac{1 + e}{7 - e}$                                                                                                                            | A1       |       | A1:CSO (AG)                                                   |  |
|       |                                                                                                                                                                                              |          | 7     |                                                               |  |
|       | Tota                                                                                                                                                                                         | al       | 14    |                                                               |  |

| Q     | Solution                                                                                                                                                                    | Mark | Total | Comment                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------------------------------------------------|
| 7 (a) | $v_{c} = 15$ $v_{Q} = 10$ $v_{C}$ $v_{T}$ $v_{C}$ $v_{T}$ $v_{Q}$ $v_{T}$ $v_{Q}$                                                                                           | B1   |       | B1:For<br>combined<br>velocity<br>triangles (PI)    |
|       | $\frac{25}{\sin 40^\circ} = \frac{T v_Q}{\sin 30^\circ}$                                                                                                                    | M1   |       | M1: Sine rule to find Vel of <i>T</i> rel to Q      |
|       | ${}_{T}v_{Q} = \frac{25\sin 30^{\circ}}{\sin 40^{\circ}}  (= 19.4465)$                                                                                                      | A1   |       | A1: Correct<br>expression or                        |
|       | $v_{T} = \sqrt{10^{2} + \left(\frac{25\sin 30^{\circ}}{\sin 40^{\circ}}\right)^{2} - 2 \times 10 \times \frac{25\sin 30^{\circ}}{\sin 40^{\circ}} \times \cos 110^{\circ}}$ | M1   |       | value<br>M1: Cosine rule<br>to find vel of <i>T</i> |
|       | $v_T = 24.7(222662) \text{ ms}^{-1}$                                                                                                                                        | A1   |       | A1: Correct<br>expression or                        |
|       | $\frac{\sin\theta}{\left(\frac{25\sin 30^{\circ}}{\sin 40^{\circ}}\right)} = \frac{\sin 110^{\circ}}{24.7222662}$                                                           | M1   |       | M1: Sine rule to find $\theta$                      |
|       | $\theta = 47.6601^{\circ}$                                                                                                                                                  | A1   |       | A1: Correct θ                                       |
| (b)   | Bearing: 318<br>N $v_T = 24.7$ 42°<br>T<br>400m<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d<br>d                                                                           |      | 8     | B1:Right-                                           |
|       |                                                                                                                                                                             |      |       | angled velocity<br>triangle                         |
|       | $\cos \alpha = \frac{10}{24.7}$                                                                                                                                             | M1   |       | M1: Using trig to                                   |
|       |                                                                                                                                                                             | A1   |       | A1: Correct<br>equation to find                     |
|       | $\alpha = 66(.11775)^{\circ}$                                                                                                                                               | A1   |       | A1: Correct α                                       |
|       | Motor cyclist's bearing: 024°                                                                                                                                               | A1   | 5     | A1: Correct<br>bearing                              |
|       |                                                                                                                                                                             |      |       |                                                     |
|       | Total                                                                                                                                                                       |      | 13    |                                                     |

| Q                     | Solution                                                                                                                                                                   | Mark | Total | Comment                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------------------------------------------------------|
| 7(a)<br>Alternative 1 |                                                                                                                                                                            | B1   |       | B1: For<br>combined<br>velocity                           |
|                       | If $v_T$ makes angle $\beta$ with the north, then                                                                                                                          |      |       | triangles (PI)                                            |
|                       | $\frac{v_T}{\sin 30^\circ} = \frac{15}{\sin(60^\circ - \beta)}$                                                                                                            | M1   |       | M1: Sine rule to link $v_T$ and $\beta$ using 15, 30, 60. |
|                       | $\frac{v_T}{\sin 110^\circ} = \frac{10}{\sin(\beta - 20^\circ)}$                                                                                                           | M1   |       | M1: Sine rule to link $v_T$ and $\beta$ using 10, 110,    |
|                       | $15\sin 30^\circ \sin(\beta - 20^\circ) = 10\sin 110^\circ \sin(60^\circ - \beta)$                                                                                         | dM1  |       | dM1: Correct<br>eqn in β                                  |
|                       | $15\sin 30^{\circ} \left(\sin\beta\cos 20^{\circ} - \cos\beta\sin 20^{\circ}\right) = 10\sin 110^{\circ} \left(\sin 60^{\circ}\cos\beta - \cos 60^{\circ}\sin\beta\right)$ |      |       |                                                           |
|                       | $\tan \beta = \frac{10\sin 110^{\circ}\sin 60^{\circ} + 15\sin 30^{\circ}\sin 20^{\circ}}{15\sin 30^{\circ}\cos 20^{\circ} + 10\sin 110^{\circ}\cos 60^{\circ}}$           | dM1  | 8     | dM1: Finding<br>tanβ                                      |
|                       | $\beta = 42.3^{\circ}$                                                                                                                                                     | A1   |       | A1: Correct β 🗌                                           |
|                       | Bearing: 318°                                                                                                                                                              | A1   |       | A1: Correct<br>bearing (AG)                               |
| Altornativo 2         | $\frac{v_T}{\sin 30^\circ} = \frac{15}{\sin(60^\circ - 42.3)}$ $v_T = 24.7 \text{ ms}^{-1}$                                                                                | A1   |       | A1: Correct vel<br>of <i>T</i>                            |
| Alternative 2         | $v_T = \begin{pmatrix} a \\ b \end{pmatrix}$                                                                                                                               |      |       |                                                           |
|                       | $_T v_Q = \begin{pmatrix} a+10\\b \end{pmatrix}$                                                                                                                           | B1   |       | B1: Correct<br>vector                                     |
|                       | $_T v_c = \begin{pmatrix} a - 15 \\ b \end{pmatrix}$                                                                                                                       | B1   |       | B1: Correct<br>vector                                     |
|                       | $\frac{a+10}{b} = -\tan 20^{\circ}  \text{OE}$                                                                                                                             | M1   | 8     | M1: Correct ratio for tan20                               |
|                       | $\frac{a-15}{b} = -\tan 60^{\circ}  OE$                                                                                                                                    | M1   |       | M1: Correct ratio<br>for tan60                            |
|                       | a = -16.65 $b = 18.27Bearing: 270^{\circ} + \tan^{-1}(\frac{18.27}{2}) - \frac{1}{2}$                                                                                      | A1   |       | correct                                                   |
|                       | $(16.65)^{-1}$                                                                                                                                                             |      |       |                                                           |
|                       | 318°                                                                                                                                                                       | A1   |       | A1: Correct<br>expression for                             |

|                                                                      |    | bearing         |
|----------------------------------------------------------------------|----|-----------------|
| $v_T = \sqrt{(16.65)^2 + (18.27)^2}$<br>$v_T = 24.7 \text{ ms}^{-1}$ | A1 | A1: CAO (AG)    |
| $v_T = 24.7 \text{ ms}$                                              |    | A1: Correct vel |
|                                                                      | A1 | of T            |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |
|                                                                      |    |                 |



\_\_\_\_

# Unit grade boundaries – June 2016 exams

### A-level – specifications that use uniform marks

|       |                       | Maximum         | Grade Boundaries and A* Conversion Points |                 |                 |                 |                 |                 |
|-------|-----------------------|-----------------|-------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Code  | Title                 | Mark            | <b>A</b> *                                | Α               | В               | С               | D               | E               |
| MM03  | MATHEMATICS UNIT MM03 | <mark>75</mark> | <mark>53</mark>                           | <mark>47</mark> | <mark>41</mark> | <mark>36</mark> | <mark>31</mark> | <mark>26</mark> |
| MM04  | MATHEMATICS UNIT MM04 | 75              | 66                                        | 59              | 52              | 45              | 38              | 31              |
| MM05  | MATHEMATICS UNIT MM05 | 75              | 64                                        | 56              | 48              | 41              | 34              | 27              |
| MM1B  | MATHEMATICS UNIT MM1B | 75              | -                                         | 51              | 45              | 40              | 35              | 30              |
| MM2B  | MATHEMATICS UNIT MM2B | 75              | 63                                        | 58              | 51              | 44              | 37              | 31              |
| MPC1  | MATHEMATICS UNIT MPC1 | 75              | -                                         | 62              | 56              | 50              | 45              | 40              |
| MPC2  | MATHEMATICS UNIT MPC2 | 75              | -                                         | 59              | 52              | 45              | 38              | 32              |
| MPC3  | MATHEMATICS UNIT MPC3 | 75              | 53                                        | 47              | 43              | 39              | 36              | 33              |
| MPC4  | MATHEMATICS UNIT MPC4 | 75              | 60                                        | 55              | 50              | 45              | 41              | 37              |
| MS03  | MATHEMATICS UNIT MS03 | 75              | 67                                        | 60              | 53              | 46              | 39              | 32              |
| MS04  | MATHEMATICS UNIT MS04 | 75              | 67                                        | 59              | 51              | 43              | 36              | 29              |
| MS1A  | MATHEMATICS UNIT MS1A | 100             |                                           | no ca           | ndidates were   | entered for th  | is unit         |                 |
| MS1B  | MATHEMATICS UNIT MS1B | 75              | -                                         | 59              | 54              | 49              | 44              | 39              |
| MS2B  | MATHEMATICS UNIT MS2B | 75              | 69                                        | 65              | 59              | 53              | 47              | 41              |
|       |                       |                 |                                           |                 |                 |                 |                 |                 |
| MEST1 | MEDIA STUDIES UNIT 1  | 80              | -                                         | 55              | 49              | 43              | 37              | 31              |
| MEST2 | MEDIA STUDIES UNIT 2  | 80              | -                                         | 65              | 56              | 47              | 38              | 30              |
| MEST3 | MEDIA STUDIES UNIT 3  | 80              | 75                                        | 70              | 60              | 50              | 40              | 31              |
| MEST4 | MEDIA STUDIES UNIT 4  | 80              | 75                                        | 70              | 58              | 47              | 36              | 25              |
|       |                       |                 |                                           |                 |                 |                 |                 |                 |
| MHEB1 | MODERN HEBREW UNIT 1  | 100             | -                                         | 70              | 65              | 60              | 55              | 50              |
| MHEB2 | MODERN HEBREW UNIT 2  | 100             | 80                                        | 72              | 64              | 57              | 50              | 43              |