General Certificate of Education June 2008 Advanced Level Examination

# MATHEMATICS Unit Mechanics 3

MM03



Friday 23 May 2008 9.00 am to 10.30 am

## For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

#### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MM03.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The **final** answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take  $g = 9.8 \text{ m s}^{-2}$ , unless stated otherwise.

## Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

## Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

#### Answer all questions.

1 The speed,  $v m s^{-1}$ , of a wave travelling along the surface of a sea is believed to depend on

the depth of the sea, d m, the density of the water,  $\rho \text{ kg m}^{-3}$ , the acceleration due to gravity, g, and a dimensionless constant, k

so that

$$v = k d^{\alpha} \rho^{\beta} g^{\gamma}$$

where  $\alpha$ ,  $\beta$  and  $\gamma$  are constants.

By using dimensional analysis, show that  $\beta = 0$  and find the values of  $\alpha$  and  $\gamma$ . (6 marks)

2 The unit vectors **i** and **j** are directed due east and due north respectively.

Two runners, Albina and Brian, are running on level parkland with constant velocities of  $(5\mathbf{i} - \mathbf{j}) \,\mathrm{m \, s^{-1}}$  and  $(3\mathbf{i} + 4\mathbf{j}) \,\mathrm{m \, s^{-1}}$  respectively. Initially, the position vectors of Albina and Brian are  $(-60\mathbf{i} + 160\mathbf{j}) \,\mathrm{m}$  and  $(40\mathbf{i} - 90\mathbf{j}) \,\mathrm{m}$  respectively, relative to a fixed origin in the parkland.

- (a) Write down the velocity of Brian relative to Albina. (2 marks)
- (b) Find the position vector of Brian relative to Albina *t* seconds after they leave their initial positions. (3 marks)
- (c) Hence determine whether Albina and Brian will collide if they continue running with the same velocities. (3 marks)
- 3 A particle of mass 0.2 kg lies at rest on a smooth horizontal table. A horizontal force of magnitude *F* newtons acts on the particle in a constant direction for 0.1 seconds. At time *t* seconds,

$$F = 5 \times 10^3 t^2, \quad 0 \le t \le 0.1$$

Find the value of t when the speed of the particle is  $2 \text{ m s}^{-1}$ . (4 marks)

- 4 Two smooth spheres, A and B, have equal radii and masses m and 2m respectively. The spheres are moving on a smooth horizontal plane. The sphere A has velocity  $(4\mathbf{i} + 3\mathbf{j})$  when it collides with the sphere B which has velocity  $(-2\mathbf{i} + 2\mathbf{j})$ . After the collision, the velocity of B is  $(\mathbf{i} + \mathbf{j})$ .
  - (a) Find the velocity of A immediately after the collision. (3 marks)
  - (b) Find the angle between the velocities of A and B immediately after the collision.

(3 marks)

- (c) Find the impulse exerted by *B* on *A*. (3 marks)
- (d) State, as a vector, the direction of the line of centres of *A* and *B* when they collide. (1 mark)
- 5 A boy throws a small ball from a height of 1.5 m above horizontal ground with initial velocity  $10 \text{ m s}^{-1}$  at an angle  $\alpha$  above the horizontal. The ball hits a small can placed on a vertical wall of height 2.5 m, which is at a horizontal distance of 5 m from the initial position of the ball, as shown in the diagram.



(a) Show that  $\alpha$  satisfies the equation

$$49 \tan^2 \alpha - 200 \tan \alpha + 89 = 0$$
 (7 marks)

- (b) Find the **two** possible values of  $\alpha$ , giving your answers to the nearest 0.1°. (3 marks)
- (c) (i) To knock the can off the wall, the horizontal component of the velocity of the ball must be greater than  $8 \text{ m s}^{-1}$ .

Show that, for one of the possible values of  $\alpha$  found in part (b), the can will be knocked off the wall, and for the other, it will **not** be knocked off the wall.

(3 marks)

(ii) Given that the can is knocked off the wall, find the direction in which the ball is moving as it hits the can. (4 marks)

6 A small smooth ball of mass *m*, moving on a smooth horizontal surface, hits a smooth vertical wall and rebounds. The coefficient of restitution between the wall and the ball is  $\frac{3}{4}$ .

Immediately before the collision, the ball has velocity u and the angle between the ball's direction of motion and the wall is  $\alpha$ . The ball's direction of motion immediately after the collision is at right angles to its direction of motion before the collision, as shown in the diagram.



- (a) Show that  $\tan \alpha = \frac{2}{\sqrt{3}}$ . (5 marks)
- (b) Find, in terms of *u*, the speed of the ball immediately after the collision. (2 marks)
- (c) The force exerted on the ball by the wall acts for 0.1 seconds.

Given that m = 0.2 kg and  $u = 4 \text{ m s}^{-1}$ , find the average force exerted by the wall on the ball. (6 marks)

7 A projectile is fired with speed u from a point O on a plane which is inclined at an angle  $\alpha$  to the horizontal. The projectile is fired at an angle  $\theta$  to the inclined plane and moves in a vertical plane through a line of greatest slope of the inclined plane. The projectile lands at a point P, lower down the inclined plane, as shown in the diagram.



- (a) Find, in terms of  $u, g, \theta$  and  $\alpha$ , the greatest perpendicular distance of the projectile from the plane. (4 marks)
- (b) (i) Find, in terms of  $u, g, \theta$  and  $\alpha$ , the time of flight from O to P. (2 marks)
  - (ii) By using the identity  $\cos A \cos B + \sin A \sin B = \cos(A B)$ , show that the distance *OP* is given by  $\frac{2u^2 \sin \theta \cos(\theta \alpha)}{g \cos^2 \alpha}$ . (6 marks)
  - (iii) Hence, by using the identity  $2\sin A\cos B = \sin(A+B) + \sin(A-B)$  or otherwise, show that, as  $\theta$  varies, the maximum possible distance *OP* is  $\frac{u^2}{g(1-\sin\alpha)}$ . (5 marks)

#### END OF QUESTIONS

| М          | mark is for method                                                 |     |                            |  |  |  |  |
|------------|--------------------------------------------------------------------|-----|----------------------------|--|--|--|--|
| m or dM    | mark is dependent on one or more M marks and is for method         |     |                            |  |  |  |  |
| А          | mark is dependent on M or m marks and is for accuracy              |     |                            |  |  |  |  |
| В          | mark is independent of M or m marks and is for method and accuracy |     |                            |  |  |  |  |
| E          | mark is for explanation                                            |     |                            |  |  |  |  |
|            |                                                                    |     |                            |  |  |  |  |
| or ft or F | follow through from previous                                       |     |                            |  |  |  |  |
|            | incorrect result                                                   | MC  | mis-copy                   |  |  |  |  |
| CAO        | correct answer only                                                | MR  | mis-read                   |  |  |  |  |
| CSO        | correct solution only                                              | RA  | required accuracy          |  |  |  |  |
| AWFW       | anything which falls within                                        | FW  | further work               |  |  |  |  |
| AWRT       | anything which rounds to                                           | ISW | ignore subsequent work     |  |  |  |  |
| ACF        | any correct form                                                   | FIW | from incorrect work        |  |  |  |  |
| AG         | answer given                                                       | BOD | given benefit of doubt     |  |  |  |  |
| SC         | special case                                                       | WR  | work replaced by candidate |  |  |  |  |
| OE         | or equivalent                                                      | FB  | formulae book              |  |  |  |  |
| A2,1       | 2 or 1 (or 0) accuracy marks                                       | NOS | not on scheme              |  |  |  |  |
| –x EE      | deduct x marks for each error                                      | G   | graph                      |  |  |  |  |
| NMS        | no method shown                                                    | c   | candidate                  |  |  |  |  |
| PI         | possibly implied                                                   | sf  | significant figure(s)      |  |  |  |  |
| SCA        | substantially correct approach                                     | dp  | decimal place(s)           |  |  |  |  |
|            |                                                                    |     |                            |  |  |  |  |

## Key to mark scheme and abbreviations used in marking

## No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

## Otherwise we require evidence of a correct method for any marks to be awarded.

| MM03 |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q    | Solution                                                           |      | Marks | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1    | $LT^{-1} = L^{\alpha} \times (ML^{-3})^{\beta} (LT^{-2})^{\gamma}$ |      | M1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | There is no <i>M</i> on the left hand side,                        |      | Е1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | so $\beta = 0$ .                                                   |      | БI    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $x = 1 + x^{\alpha + \gamma} = -2^{\gamma}$                        |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $LT^{+} = L^{\alpha + \gamma} T^{-2\gamma}$                        |      | m1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dependent on M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $\alpha + \gamma = 1$                                              |      | m1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equating corresponding indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | $-2\gamma = -1$                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Equating corresponding indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | $\gamma = \frac{1}{2}$                                             |      | A1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | 2                                                                  |      | A 1   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $\alpha = \frac{1}{2}$                                             |      | AI    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | T                                                                  | otal |       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2(a) | $_A v_B = v_B - v_A$                                               |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | = (3i+4j) - (5i-j)                                                 |      | M1    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | =-2i+5j                                                            |      | AI    | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (b)  | $_{A}r_{0B} = (40i - 90j) - (-60i + 160j)$                         |      | M1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | =100i - 250 j                                                      |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Simplification not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | $_{A}r_{B} = (100i - 250j) + (-2i + 5j)t$                          |      | ml    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | necessary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                    |      | AIF   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALTERNATIVE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $r_A = (60i + 160j) + (5i - j)t$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $r_{B} = (40i - 90j) + (3i + 4j)t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $r_{p} = \left[ (40i - 90i) + (3i + 4i)t \right] -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} A & B \\ C & (-1) & (-1) \\ C & (-1) & (-1) \\ C & (-1) & (-1) \\ C & (-1) \\ $ |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{bmatrix} (00i + 100j) + (3i - j)i \end{bmatrix}  \text{IIIAI}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (c)  | r = (100 - 2t)i + (-250 + 5t)i                                     |      | M1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collecting <i>i</i> and <i>i</i> terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | $A^{TB}$ (100 $200 \times (200 \times 50)$ )                       |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $(100 - 2t) = 0  \Leftrightarrow  t = 50$                          |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $(-250+5t) = 0  \Leftrightarrow  t = 50$                           |      | AIF   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $\therefore A \text{ and } B \text{ would collide}$                |      | E1    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                    |      |       | ALTEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RNATIVE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                    |      |       | L(100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2t)i + (-250 + 5t)j \rfloor (-2i + 5j) = 0$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                    |      |       | -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + -200 + | $4t - 1250 + 25t = 0 \Longrightarrow t = 50 \qquad A1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                    |      |       | 1 mart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(100-2\times50)^2 + (-250+5\times50)^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      |                                                                    |      |       | $\therefore A an$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d <i>B</i> would collide F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | Т                                                                  | otal |       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| L    |                                                                    |      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Q    | Solution                                                                                                                                                                                             | Marks            | Total | Comments                                                                                                                                             |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3    | $\int_{0}^{t} 5 \times 10^{3} t^{2} dt = 0.2(2) - 0.2(0)$                                                                                                                                            | M1A1             |       | Impulse-Momentum<br>principle                                                                                                                        |
|      | $\frac{5 \times 10^3}{3} t^3 = 0.4$                                                                                                                                                                  | A1F              |       |                                                                                                                                                      |
|      | t = 0.0621                                                                                                                                                                                           | A1F              | 4     | At least 3 sig. fig.<br>required                                                                                                                     |
|      | Total                                                                                                                                                                                                |                  | 4     |                                                                                                                                                      |
| 4(a) | C.L.M.<br>$m (4\mathbf{i} + 3\mathbf{j}) + 2m(-2\mathbf{i} + 2\mathbf{j}) = mv + 2m(\mathbf{i} + \mathbf{j})$<br>$7\mathbf{j} = v + (2\mathbf{i} + 2\mathbf{j})$<br>$v = -2\mathbf{i} + 5\mathbf{i}$ | M1               | 3     | A1 for one slip                                                                                                                                      |
| (b)  | v 21 · 5j                                                                                                                                                                                            | 112,1,0          | 5     |                                                                                                                                                      |
|      | The angle with <b>j</b> direction :                                                                                                                                                                  |                  |       | OE. in <b>i</b> direction                                                                                                                            |
|      | A: $\tan^{-1}\frac{2}{5} = 21.8^{\circ}$                                                                                                                                                             | M1               |       | M1 for two inverse tan                                                                                                                               |
|      | $B: \tan^{-1}\frac{1}{1} = 45^{\circ}$                                                                                                                                                               | 1011             |       | and addition of angles                                                                                                                               |
|      | The angle = $21.8^{\circ} + 45^{\circ} = 67^{\circ}$                                                                                                                                                 | A1F              | 3     | AWRT.<br>Alternative (not in the specification)<br>$(-2\mathbf{i}+5\mathbf{j}).(\mathbf{i}+\mathbf{j}) = \sqrt{29} \times \sqrt{2} \cos \theta$ (M1) |
|      |                                                                                                                                                                                                      |                  |       | $\cos\theta = \frac{3}{\sqrt{58}} \tag{A1}$                                                                                                          |
|      |                                                                                                                                                                                                      |                  |       | $\theta = 67^{\circ}$ (A1F) awrt                                                                                                                     |
| (c)  | The impulse = Gain in momentum of $A$<br>= $m(-2\mathbf{i} + 5\mathbf{j}) - m(4\mathbf{i} + 3\mathbf{j})$<br>= $-6m\mathbf{i} + 2m\mathbf{j}$                                                        | M1<br>A1F<br>A1F | 3     |                                                                                                                                                      |
| (d)  | $-3\mathbf{i} + \mathbf{j}$ or any scalar multiple of $-3\mathbf{i} + \mathbf{j}$                                                                                                                    | B1               | 1     |                                                                                                                                                      |
|      | Total                                                                                                                                                                                                |                  | 10    |                                                                                                                                                      |

| Q            | Solution                                                                                         | Marks             | Total                   | Comments                           |
|--------------|--------------------------------------------------------------------------------------------------|-------------------|-------------------------|------------------------------------|
| <b>5</b> (a) | $5 = 10 \cos \alpha . t$                                                                         | M1                |                         |                                    |
|              | $t = \frac{5}{10\cos\alpha}$                                                                     | A1                |                         |                                    |
|              | $1 = -\frac{1}{2}(9.8)t^2 + 10\sin\alpha t$                                                      | M1A1              |                         |                                    |
|              | $1 = -\frac{1}{2}(9.8)\frac{25}{100\cos^2\alpha} + 10\sin\alpha\frac{5}{10\cos\alpha}$           | m1                |                         | Dependent on both<br>M1s           |
|              | $1 = -\frac{1}{2}(9.8)\frac{25}{100}(1 + \tan^2 \alpha) + 10\sin \alpha \frac{5}{10\cos \alpha}$ |                   |                         |                                    |
|              | $49\tan^2\alpha - 200\tan\alpha + 89 = 0$                                                        | A1                | 7                       | Answer given                       |
|              |                                                                                                  |                   |                         |                                    |
| (b)          | $\tan \alpha = \frac{200 \pm \sqrt{40000 - 4(49)(89)}}{2 \times 49}$                             | M1                |                         |                                    |
|              | = 3.57, 0.508                                                                                    | A1                |                         | AWRT                               |
|              | $\alpha = 74.4^{\circ} 26.9^{\circ}$                                                             | A1F               | 3                       |                                    |
|              |                                                                                                  |                   |                         |                                    |
| (c)(i)       | $10\cos 26.9^\circ = 8.92$ (or 8.91) > 8                                                         |                   |                         |                                    |
|              | $\Rightarrow$ The can will be knocked off the wall                                               | M1                |                         | Both values checked                |
|              | $10\cos(74)/4^\circ - 2.60 < 8$                                                                  | A1F               |                         | Acc. of both results               |
|              | $\Rightarrow \text{The can will not be knowled off the wall}$                                    | E1                | 2                       | Correct conclusions                |
|              | $\rightarrow$ The can will not be knocked off the wall                                           | EI                | 3                       |                                    |
|              |                                                                                                  | ALTER             | NATIVE                  |                                    |
|              |                                                                                                  | The can           | will be k               | nocked off the wall if             |
|              |                                                                                                  | $10 \cos \alpha$  | > 8                     |                                    |
|              |                                                                                                  | $\cos \alpha > 0$ | 0.8<br>)°               | M1A1                               |
|              |                                                                                                  | So for $a$        | $\alpha = 26.9^{\circ}$ | the can will be knocked off        |
|              |                                                                                                  | and for           | $\alpha = 74.4$ °       | the can will not be knocked off E1 |
| 5(c)(ii)     | x = ut                                                                                           |                   |                         | ,                                  |
|              | 5                                                                                                |                   |                         |                                    |
|              | $l = \frac{1}{10\cos 26.9^{\circ}}$                                                              |                   |                         |                                    |
|              | $v = 10 \sin 26.9^{\circ} - 9.8(\frac{5}{10 \cos 26.9^{\circ}})$                                 | M1                |                         | Any correct use of equations       |
|              | v = -0.970                                                                                       | A1F               |                         |                                    |
|              | $\tan \theta = -0.970$                                                                           |                   |                         |                                    |
|              | 8.92                                                                                             | MI                |                         |                                    |
|              | $\theta = -6.2^{\circ}$                                                                          |                   |                         |                                    |
|              | At an angle of depression of 6.2°                                                                | A1F               | 4                       | AWRT 6°                            |
|              |                                                                                                  |                   |                         |                                    |
|              | Total                                                                                            |                   | 17                      |                                    |

| Q    | Solution                                                                                                                          | Marks | Total | Comments                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|
| 6(a) | v<br>lo<br>u                                                                                                                      |       |       |                          |
|      | Parallel to the wall : velocity is unchanged<br>$u \cos \alpha = v \sin \alpha$<br>Perpendicular to the wall : Law of Restitution | M1    |       |                          |
|      | $\frac{v\cos\alpha}{u\sin\alpha} = \frac{3}{4}$                                                                                   | M1    |       |                          |
|      | $\frac{v\cos\alpha}{v\tan\alpha\sin\alpha} = \frac{3}{4}$                                                                         | m1    |       | Dependent on both<br>M1s |
|      | $\frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{3}{4}$                                                                               | m1    |       | Dependent on both<br>M1s |
|      | $\tan^2 \alpha = \frac{4}{3}$                                                                                                     |       |       |                          |
| (b)  | $\tan \alpha = \frac{2}{\sqrt{3}}$                                                                                                | A1    | 5     | Answer given             |
|      | $v = \frac{u}{\tan \alpha}$                                                                                                       | M1    |       |                          |
|      | $v = \frac{\sqrt{3}}{2}u$ or 0.866 <i>u</i>                                                                                       | A1    | 2     |                          |
| (c)  | Magnitude of Impulse =                                                                                                            |       |       |                          |
|      | Change in momentum perpendicular<br>to the wall                                                                                   | M1    |       |                          |
|      | $= 0.2 \times v \cos \alpha - (-0.2 \times 4 \sin \alpha)$                                                                        | A1 A1 |       |                          |
|      | $= 0.2 \times \frac{\sqrt{3}}{2} \times 4\cos\alpha + 0.2 \times 4\sin\alpha$                                                     | ml    |       |                          |
|      | = 1.06 Ns                                                                                                                         | A1F   |       |                          |
|      | Average Force = $\frac{1.06}{0.1} = 10.6$ N                                                                                       | A1F   | 6     |                          |
|      | Total                                                                                                                             |       | 13    |                          |

| Q      | Solution                                                                                                         | Marks | Total | Comments                 |
|--------|------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------|
| 7      | y $x$ $y$                                                                    |       |       |                          |
| (a)    | $v_y^2 = u^2 \sin^2 \theta - 2 \operatorname{gcosa} y$                                                           | M1 A1 |       |                          |
|        | $0 = u^2 \sin^2 \theta - 2g \cos \alpha y_{\max}$                                                                | m1    |       |                          |
|        | $y_{\max} = \frac{u^2 \sin^2 \theta}{2g \cos \alpha}$                                                            | A1F   | 4     |                          |
| (b)(i) | $u\sin\theta t - \frac{1}{2}g\cos(\alpha)t^2 = 0$                                                                | M1    |       |                          |
|        | $t = \frac{2u\sin\theta}{g\cos\alpha}$                                                                           | A1    | 2     |                          |
| (ii)   | $x = u\cos\theta t - \frac{1}{2}g\sin(-\alpha)t^2$                                                               | M1 A1 |       |                          |
|        | $R = u\cos\theta(\frac{2u\sin\theta}{g\cos\alpha}) + \frac{1}{2}g\sin\alpha(\frac{2u\sin\theta}{g\cos\alpha})^2$ | M1    |       |                          |
|        | $=\frac{2u^2\cos\theta\sin\theta\cos\alpha+2u^2\sin\alpha\sin^2\theta}{g\cos^2\alpha}$                           | ml    |       | Dependent on both<br>M1s |
|        | $=\frac{2u^2\sin\theta(\cos\theta\cos\alpha+\sin\theta\sin\alpha)}{g\cos^2\alpha}$                               | A1F   |       |                          |
|        | $=\frac{2u^2\sin\theta\cos(\theta-\alpha)}{g\cos^2\alpha}$                                                       | A1    | 6     | Answer given             |
| (iii)  | $\overline{OP} = \frac{2u^2 \sin\theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$                                  |       |       |                          |
|        | $=\frac{2u^2 \frac{1}{2} \left[\sin(2\theta - \alpha) + \sin\alpha\right]}{g \cos^2 \alpha}$                     | M1A1  |       |                          |
|        | $\overline{OP}$ is max when $\sin(2\theta - \alpha) = 1$                                                         | M1    |       |                          |
|        | $\overline{OP}_{\max} = \frac{u^2 (1 + \sin \alpha)}{g \cos^2 \alpha}$                                           | A1F   |       |                          |
|        | $\overline{OP}_{\max} = \frac{u^2 (1 + \sin \alpha)}{g (1 - \sin^2 \alpha)}$                                     |       |       |                          |
|        | $\overline{OP}_{\max} = \frac{u^2}{g(l-\sin\alpha)}$                                                             | A1    | 5     | Answer given             |
|        | Total                                                                                                            |       | 17    |                          |

| Q    | Solution                                                                                                                         | Marks | Total | Comments |
|------|----------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|
| 7(a) | ALTERNATIVE                                                                                                                      |       |       |          |
|      | $0 = u\sin\theta - g\cos a t$                                                                                                    | M1    |       |          |
|      | $t = \frac{u\sin\theta}{\cos\theta}$                                                                                             | A1    |       |          |
|      | $y_{max} = u\sin\theta \left(\frac{u\sin\theta}{g\cos a}\right) - \frac{1}{2}g\cos a \left(\frac{u\sin\theta}{g\cos a}\right)^2$ | m1    |       |          |
|      | $\mathcal{Y}_{max} = \frac{u^2 \sin^2 \theta}{2 \mathrm{g} \mathrm{cos} a}$                                                      | A1F   | 4     |          |
|      | Total                                                                                                                            |       | 4     |          |



# Scaled mark component grade boundaries - June 2008 exams

GCE

| Component |                                       | Maximum         |                 | Scaled Ma       | rk Grade B      | oundaries       |                 |
|-----------|---------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Code      | Component Title                       | Scaled Mark     | Α               | В               | С               | D               | E               |
| ICT4      | GCE INFO AND COMM TECH UNIT 4         | 90              | 61              | 55              | 49              | 44              | 39              |
| ICT5      | GCE INFO AND COMM TECH UNIT 5         | 90              | 69              | 63              | 57              | 52              | 47              |
| ICT6      | GCE INFO AND COMM TECH UNIT 6         | 90              | 59              | 51              | 43              | 36              | 29              |
| LAW1      | GCE LAW UNIT 1                        | 65              | 50              | 45              | 41              | 37              | 33              |
| LAW2      | GCE LAW UNIT 2                        | 65              | 46              | 40              | 35              | 30              | 25              |
| LAW3      | GCE LAW UNIT 3                        | 65              | 45              | 40              | 35              | 30              | 26              |
| LAW4      | GCE LAW UNIT 4                        | 85              | 58              | 53              | 48              | 43              | 39              |
| LAW5      | GCE LAW UNIT 5                        | 85              | 57              | 53              | 49              | 45              | 41              |
| LAW6      | GCE LAW UNIT 6                        | 70              | 48              | 43              | 39              | 35              | 31              |
| MD01      | GCE MATHEMATICS UNIT D01              | 75              | 60              | 52              | 45              | 38              | 31              |
| MD02      | GCE MATHEMATICS UNIT D02              | 75              | 58              | 50              | 43              | 36              | 29              |
| MFP1      | GCE MATHEMATICS UNIT FP1              | 75              | 63              | 55              | 48              | 41              | 34              |
| MFP2      | GCE MATHEMATICS UNIT FP2              | 75              | 58              | 51              | 44              | 37              | 30              |
| MFP3      | GCE MATHEMATICS UNIT FP3              | 75              | 63              | 55              | 47              | 39              | 31              |
| MFP4      | GCE MATHEMATICS UNIT FP4              | 75              | 66              | 58              | 51              | 44              | 37              |
| MM03      | GCE MATHEMATICS UNIT M03              | <mark>75</mark> | <mark>56</mark> | <mark>48</mark> | <mark>40</mark> | <mark>33</mark> | <mark>26</mark> |
| MM04      | GCE MATHEMATICS UNIT M04              | 75              | 54              | 46              | 39              | 32              | 25              |
| MM05      | GCE MATHEMATICS UNIT M05              | 75              | 60              | 52              | 44              | 36              | 29              |
| MM1A/C    | GCE MATHEMATICS UNIT M1A - COURSEWORK | 25              | 20              | 18              | 15              | 13              | 10              |
| MM1A/W    | GCE MATHEMATICS UNIT M1A - WRITTEN    | 75              | 60              | 51              | 43              | 35              | 28              |
| MM1B      | GCE MATHEMATICS UNIT M1B              | 75              | 61              | 52              | 43              | 34              | 25              |
| MM2A/C    | GCE MATHEMATICS UNIT M2A - COURSEWORK | 25              | 20              | 18              | 15              | 13              | 10              |
| MM2A/W    | GCE MATHEMATICS UNIT M2A - WRITTEN    | 75              | 55              | 48              | 40              | 34              | 28              |
| MM2B      | GCE MATHEMATICS UNIT M2B              | 75              | 53              | 46              | 39              | 33              | 27              |
| MPC1      | GCE MATHEMATICS UNIT PC1              | 75              | 59              | 51              | 43              | 35              | 28              |
| MPC2      | GCE MATHEMATICS UNIT PC2              | 75              | 60              | 52              | 44              | 37              | 30              |