Matrix transformations - exam questions

Question 1: June 2006 - Q2

A transformation is represented by the matrix $\mathbf{A} = \begin{bmatrix} 0.28 & -0.96 & 0 \\ 0.96 & 0.28 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- (a) Evaluate det A. (1 mark)
- (b) State the invariant line of the transformation. (1 mark)
- (c) Give a full geometrical description of this transformation. (3 marks)

Question 2: Jan 2006 - Q1

Describe the geometrical transformation defined by the matrix

$$\begin{bmatrix} 0.6 & 0 & 0.8 \\ 0 & 1 & 0 \\ -0.8 & 0 & 0.6 \end{bmatrix}$$
 (3 marks)

Question 3: Jun 2007 - Q6

The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 2 & t \end{bmatrix}$$

- (a) Find, in terms of t, the matrices:
 - (i) AB; (3 marks)
 - (ii) **BA**. (2 marks)
- (b) Explain why AB is singular for all values of t. (1 mark)
- (c) In the case when t = -2, show that the transformation with matrix **BA** is the combination of an enlargement, E, and a second transformation, F. Find the scale factor of E and give a full geometrical description of F. (6 marks)

Question 4: Jan 2007 - Q4

The matrices $\mathbf{M}_A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$ and $\mathbf{M}_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ represent the transformations

A and B respectively.

- (a) Give a full geometrical description of each of A and B. (5 marks)
- (b) Transformation C is obtained by carrying out A followed by B.
- (i) Find $\mathbf{M}_{\mathbf{C}}$, the matrix of C. (2 marks)
 - (ii) Hence give a full geometrical description of the single transformation C. (2 marks)

Question 5: Jan 2008 - Q1

Give a full geometrical description of the transformation represented by each of the following matrices:

(a)
$$\begin{bmatrix} 0.8 & 0 & -0.6 \\ 0 & 1 & 0 \\ 0.6 & 0 & 0.8 \end{bmatrix};$$
 (3 marks)

(b)
$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
. (2 marks)

Question 6: Jun 2009 - Q2

- (a) Write down the 3×3 matrices which represent the transformations A and B, where:
 - (i) A is a reflection in the plane y = x;

(2 marks)

- (ii) B is a rotation about the z-axis through the angle θ , where $\theta = \frac{\pi}{2}$. (1 mark)
- (b) (i) Find the matrix **R** which represents the composite transformation

(3 marks)

(ii) Describe the single transformation represented by R.

(2 marks)

Question 7: Jan 2010 - Q1

The 2×2 matrix **M** represents the plane transformation T. Write down the value of det **M** in each of the following cases:

- (a) T is a rotation;
- (b) T is a reflection;
- (c) T is a shear;
- (d) T is an enlargement with scale factor 3.

(4 marks)

Question 8: Jun 2010 - Q8

The matrix $\begin{bmatrix} 12 & 16 \\ -9 & 36 \end{bmatrix}$ represents the transformation which is the composition, in either order, of the two plane transformations

E: an enlargement, centre O and scale factor k (k > 0)

and

S: a shear parallel to the line *l* which passes through *O*

Show that k = 24 and find a cartesian equation for l.

(7 marks)

Question 9: Jun 2011 - Q2

The plane transformation T is the composition of a reflection in the line $y = x \tan \alpha$ followed by an anticlockwise rotation about O through an angle β .

Determine the matrix which represents T, and hence describe T as a single transformation. (6 marks)

Question 10: Jan 2012 - Q2

Describe the single transformation represented by each of the matrices:

(a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
; (2 marks)

(b)
$$\begin{bmatrix} 0.6 & 0 & -0.8 \\ 0 & 1 & 0 \\ 0.8 & 0 & 0.6 \end{bmatrix}$$
. (3 marks)

Matrix transformations – exam questions MS

Question 1: Jun 2006 – Q2

	Total		5
	through cos ⁻¹ 0.28	A1	3
	about the z-axis	A1√	
(c)	Rotation	M1	
(-)	The z-axis (i.e $x = y = 0$)	B1	1
(b)			
(a)	$\det \mathbf{A} = 1$	B1	1

Question 2: Jan 2006 - Q1

Queen = 1			
Rotation		B1	
about the y-axis		B1	
through an angle of 53.13°		B1	3
	Total		3

Question 3: Jun 2007 – Q6

(a)(i)	$AB = a \ 3 \times 3 \text{ matrix}$	M1	
	$\begin{pmatrix} 3 & 2 & t+1 \end{pmatrix}$	A1	
	$= \begin{pmatrix} 3 & 2 & t+1 \\ 1 & 2 & t-1 \\ 3 & 2 & t+1 \end{pmatrix}$	A1	3
(ii)	$\mathbf{B}\mathbf{A} = \mathbf{a} \ 2 \times 2 \ \mathrm{matrix}$	M1	
	= (2 2)		
	$= \begin{pmatrix} 2 & 2 \\ t & t+4 \end{pmatrix}$	A1	2
(b)	$R_1 = R_3 \ (\Rightarrow \det \mathbf{AB} = 0)$	B1	1
(c)	$\mathbf{BA} = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix} = 2\sqrt{2} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$	M1 A1	
	E: enlargement s.f. $2\sqrt{2}$	B1	
	F: Rotation	M1	
	clockwise (about O) thro' 45°	A1 A1	6
<u></u>			12

Question 4: Jan 2007 – Q4

4(a)	A is a Rotation thro' 90°	M1 A1	
	about Ox B is a Reflection in $y = 0$ (i.e. $x-z$ plane)	A1 M1 A1	5
(b)(i)	$\mathbf{M}_C = \mathbf{M}_B \; \mathbf{M}_A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	M1 A1	2
(ii)	C is a Reflection in $y = z$	M1 A1	2
	N.B. In (i):		
	$\mathbf{M}_{A} \mathbf{M}_{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} \text{ scores M0}$		
	but ft "Reflection in $y = -z$ " in (ii)		
			9

Question 5: Jan 2008 – Q1

	Total		5
(b)	through $\cos^{-1} 0.8$ Reflection in $y = x$	A1 M1A1	2
(a)	Rotation about the y-axis	M1 A1	

Question 6: Jun 2009 – Q2

	Total		8
	Reflection in $y = 0$ (or $x-z$ plane)	(M1) (A1)	
		(A1) (A1)	
	$\mathbf{R} = \mathbf{B}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(M1)	
	$\mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(B1)	
	Note 2: 90° rotation in –ve sense gives		
	Reflection in $y = 0$ (or $x-z$ plane)	(M1) (A1)	
	Note 1: For $\mathbf{R} = \mathbf{AB} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(B1)	
	Reflection in $x = 0$ (or $y-z$ plane)	M1 A1	2
(b)(i)	$\mathbf{R} = \mathbf{B}\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1 A1 A1	3
	$\mathbf{B} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B1	1
(a)(i)	$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	В2	2
Ques	tion 6: Jun 2009 – Q2		

Question 7: Jan 2010 – Q1

	Total		4
(d)	9	B1	4
(c)	1	B1	
(b)	-1	B1	
(a)	1	B1	

Question 8: Jun 2010 – Q8		
$\det \mathbf{W} = 12.36 + 9.16 = 576 = k^2$	M1	
$\Rightarrow k = 24$	A1	2
$\frac{1}{24}\mathbf{W} = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ -\frac{3}{8} & \frac{3}{2} \end{bmatrix}$	B1	
$\begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ -\frac{3}{8} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2}x + \frac{2}{3}y \\ \frac{3}{2}y - \frac{3}{8}x \end{bmatrix}$	M1 A1	
Equating this to $\begin{bmatrix} x \\ y \end{bmatrix} =$	M1	
$y = \frac{3}{4}x$	A1	
ALT. 1 $\frac{1}{24} \mathbf{W} = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ -\frac{3}{8} & \frac{3}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ -\frac{3}{8} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} x \\ mx \end{bmatrix} = \begin{bmatrix} (\frac{1}{2} + \frac{2}{3}m)x \\ (\frac{3}{2}m - \frac{3}{8})x \end{bmatrix}$ Setting $y' = mx'$ and solving for m $y = \frac{3}{4}x$	(B1) (M1) (A1) (M1) (A1)	
ALT. 2 $\lambda^2 - 2\lambda + 1 = 0$ $\Rightarrow \lambda = 1 \text{ (twice)}$	(M1) (A1)	
$\lambda = 1 \implies \frac{-\frac{1}{2}x + \frac{2}{3}y = 0}{-\frac{3}{9}x + \frac{1}{2}y = 0}$	(M1) (A1)	
8 2 "		_
$y = \frac{3}{4}x$	(A1)	5
Total	l	7

Question 9: Jun 2011 – Q2

Total		6
in $y = x \tan \left(\alpha + \frac{1}{2}\beta\right)$	A1F	6
Reflection	A1F	
$\left[\sin(2\alpha+\beta) - \cos(2\alpha+\beta)\right]$	AIF	
$\begin{bmatrix} \cos(2\alpha + \beta) & \sin(2\alpha + \beta) \\ \sin(2\alpha + \beta) & -\cos(2\alpha + \beta) \end{bmatrix}$	A1F	
F (2 0 1 (2 0 7		
Use of addition formulae	M1	
Mult'n of these in the correct order	B1	
$\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} & \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$	В1	
		I

Question 10: Jan 2012 – Q2

		Total		5
(b)	Rotation about Through cos ⁻¹ 0.6 (≈	the <i>y</i> -axis 53.13°)	M1 A1 A1	3
(a)	Reflection in $x =$	= z	M1 A1	2