Question 1: Jan 2007 – Q8

The diagram shows the curve $y = \cos^{-1}x$ for $-1 \leq x \leq 1$.

(a) Write down the exact coordinates of the points A and B. (2 marks)

(b) The equation $\cos^{-1}x = 3x + 1$ has only one root. Given that the root of this equation is x, show that $0.1 \leq x \leq 0.2$. (2 marks)

(c) Use the iteration $x_{n+1} = \frac{1}{3}(\cos^{-1}x_n - 1)$ with $x_1 = 0.1$ to find the values of x_2, x_3 and x_4, giving your answers to three decimal places. (3 marks)

Question 2: Jun 2007 – Q4

(b) The curve $y = 3^x$ intersects the line $y = x + 3$ at the point where $x = x$.

(i) Show that x lies between 0.5 and 1.5. (2 marks)

(ii) Show that the equation $3^x = x + 3$ can be rearranged into the form

$$x = \frac{\ln(x+3)}{\ln 3}$$

(2 marks)

(iii) Use the iteration $x_{n+1} = \frac{\ln(x_n+3)}{\ln 3}$ with $x_1 = 0.5$ to find x_3 to two significant figures. (2 marks)

(iv) The sketch on Figure 1 shows part of the graphs of $y = \frac{\ln(x+3)}{\ln 3}$ and $y = x$, and the position of x_1.

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (2 marks)
Question 3: Jan 2008 – Q3

The equation

\[x + (1 + 3x)^{\frac{1}{3}} = 0 \]

has a single root, \(x \).

(a) Show that \(x \) lies between \(-0.33 \) and \(-0.32 \). \((2 \text{ marks}) \)

(b) Show that the equation \(x + (1 + 3x)^{\frac{1}{3}} = 0 \) can be rearranged into the form

\[x = \frac{1}{3}(x^4 - 1) \] \((2 \text{ marks}) \)

(c) Use the iteration \(x_{n+1} = \frac{x_n^4 - 1}{3} \) with \(x_1 = -0.3 \) to find \(x_4 \), giving your answer to three significant figures. \((3 \text{ marks}) \)

Question 4: Jun 2008 – Q3

A curve is defined for \(0 \leq x \leq \frac{\pi}{4} \) by the equation \(y = x \cos 2x \), and is sketched below.

(a) Find \(\frac{dy}{dx} \). \((2 \text{ marks}) \)

(b) The point \(A \), where \(x = \alpha \), on the curve is a stationary point.

(i) Show that \(1 - 2x \tan 2x = 0 \). \((2 \text{ marks}) \)

(ii) Show that \(0.4 < \alpha < 0.5 \). \((2 \text{ marks}) \)

(iii) Show that the equation \(1 - 2x \tan 2x = 0 \) can be rearranged to become \(x = \frac{1}{2} \tan^{\frac{1}{2}} \left(\frac{1}{2x} \right) \). \((1 \text{ mark}) \)

(iv) Use the iteration \(x_{n+1} = \frac{1}{2} \tan^{\frac{1}{2}} \left(\frac{1}{2x_n} \right) \) with \(x_1 = 0.4 \) to find \(x_3 \), giving your answer to two significant figures. \((2 \text{ marks}) \)
The curve with equation \(y = x^3 + 5x - 4 \) intersects the \(x \)-axis at the point \(A \), where \(x = x \).

(a) Show that \(x \) lies between 0.5 and 1. \((2 \text{ marks})\)

(b) Show that the equation \(x^3 + 5x - 4 = 0 \) can be rearranged into the form \(x = \frac{1}{5}(4 - x^3) \). \((1 \text{ mark})\)

(c) Use the iteration \(x_{n+1} = \frac{1}{5}(4 - x_n^3) \) with \(x_1 = 0.5 \) to find \(x_3 \), giving your answer to three decimal places. \((2 \text{ marks})\)

(d) The sketch on Figure 1 shows parts of the graphs of \(y = \frac{1}{5}(4 - x^3) \) and \(y = x \), and the position of \(x_1 \).

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x_2 \) and \(x_3 \) on the \(x \)-axis. \((2 \text{ marks})\)
Question 6: Jun 2009 – Q1

(a) The curve with equation

\[y = \frac{\cos x}{2x + 1}, \quad x > -\frac{1}{2} \]

intersects the line \(y = \frac{1}{2} \) at the point where \(x = a \).

(i) Show that \(a \) lies between 0 and \(\frac{\pi}{2} \). \hspace{1cm} (2 marks)

(ii) Show that the equation \(\frac{\cos x}{2x + 1} = \frac{1}{2} \) can be rearranged into the form

\[x = \cos x - \frac{1}{2} \] \hspace{1cm} (1 mark)

(iii) Use the iteration \(x_{n+1} = \cos x_n - \frac{1}{2} \) with \(x_1 = 0 \) to find \(x_3 \), giving your answer to three decimal places. \hspace{1cm} (2 marks)

Question 7: Jan 2010 – Q2

[Figure 1, printed on the insert, is provided for use in this question.]

(a) (i) Sketch the graph of \(y = \sin^{-1} x \), where \(y \) is in radians. State the coordinates of the end points of the graph. \hspace{1cm} (3 marks)

(ii) By drawing a suitable straight line on your sketch, show that the equation

\[\sin^{-1} x = \frac{1}{4} x + 1 \]

has only one solution. \hspace{1cm} (2 marks)

(b) The root of the equation \(\sin^{-1} x = \frac{1}{4} x + 1 \) is \(\alpha \). Show that \(0.5 < \alpha < 1 \). \hspace{1cm} (2 marks)

(c) The equation \(\sin^{-1} x = \frac{1}{4} x + 1 \) can be rewritten as \(x = \sin \left(\frac{1}{4} x + 1 \right) \).

(i) Use the iteration \(x_{n+1} = \sin \left(\frac{1}{4} x_n + 1 \right) \) with \(x_1 = 0.5 \) to find the values of \(x_2 \) and \(x_3 \), giving your answers to three decimal places. \hspace{1cm} (2 marks)

(ii) The sketch on Figure 1 shows parts of the graphs of \(y = \sin \left(\frac{1}{4} x + 1 \right) \) and \(y = x \), and the position of \(x_1 \).

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x_2 \) and \(x_3 \) on the x-axis. \hspace{1cm} (2 marks)
Question 8: Jun 2010 – Q1

The curve \(y = 3^x \) intersects the curve \(y = 10 - x^3 \) at the point where \(x = a \).

(a) Show that \(a \) lies between 1 and 2. \hspace{1cm} (2 marks)

(b) (i) Show that the equation \(3^x = 10 - x^3 \) can be rearranged into the form \(x = \sqrt[3]{10 - 3^x} \). \hspace{1cm} (1 mark)

(ii) Use the iteration \(x_{n+1} = \sqrt[3]{10 - 3^{x_n}} \) with \(x_1 = 1 \) to find the values of \(x_2 \) and \(x_3 \), giving your answers to three decimal places. \hspace{1cm} (2 marks)
Iterative methods - exam questions - MS

Question 1: Jan 2007 – Q8

(a) \(A(-1, n) \)

\[B \left(\frac{0}{2}, \frac{\pi}{2} \right) \]

(b) \[\cos^2 x - 3x - 1 = 0 \]

- \(f(0.1) = 0.17 \) allow 0.2, 0.1
- \(f(0.2) = -0.23 \) allow -0.2

Change of sign: root

\[x_1 = 0.1 \]
\[x_2 = 0.1569 = 0.157 \]
\[x_3 = 0.1378 = 0.138 \]
\[x_4 = 0.144 \]

Total 7

Question 2: Jun 2007 – Q4

(i) \[f(x) = 3^x - x - 3 \]

- \(f(0.5) = -1.77 \)
- \(f(1.5) = 0.696 \)

Change of sign: root M1A1 2

(ii) \[3^x = x + 3 \]

\[\ln 3^x = \ln (x + 3) \]

\[x = \ln (x + 3) \]

\[x \approx 1.14 \] (A1)

\[x_3 \approx 1.29 = 1.3 \]

M1 A1 2

Question 3: Jan 2008 – Q3

(a) \[(x + 1 + 3x)^\frac{1}{2} = 0 \]

- \(f(-0.32) = 0.1 \)
- \(f(0.33) = -0.01 \)

Change of sign: \(-0.33 < x < -0.32\)

\(x = -(1 + 3x)^\frac{1}{4} \)

\[x^4 = 1 + 3x \]

\[x^4 - 1 = x \]

M1 A1 2

(b) \[x_1 = -0.3 \]

\(x_2 = -0.331 \) (AWRT)

\(x_3 = -0.329 \) (AWRT)

\(x_4 = -0.339 \)

A1 A1 3

Total 7

Question 4: Jun 2008 – Q3

(a) \[\frac{dy}{dx} = -x \sin 2x + x \cos 2x \]

\[M1 \]

(b)(i) \[2 \cos 2x + \cos 2x = 0 \]

Change of sign: 0.4 < \(\alpha \) < 0.5

A1 2

(b)(ii) \[f(0.4) = 0.2 \]

A1 2

(c) \[2 \tan 2x = \frac{1}{2x} \]

\[x = \frac{1}{2} \tan^{-1} \left(\frac{1}{2x} \right) \]

M1 A1 2

Question 5: Jan 2009 – Q3

(a) \[f(x) = x^2 + 5x - 4 \]

\[f(0.5) = -1.375 \]

Change of sign: 0.5 < \(\alpha \) < 1

M1 A1 2

(b) \[x^2 + 5x - 4 = 0 \]

\[5x = 4 - x^2 \]

\[x = \frac{1}{5} (4 - x^2) \]

M1 A1 2

(c) \(x_1 = 0.5 \)

\(x_2 = 0.775 \) (A1)

\(x_3 = 0.707 \)

A1 2

(d) \[y \]

Total 7
Question 6: Jun 2009 – Q1

(i) \[f(x) = \frac{\cos x}{2x+1} - \frac{1}{2} \]
\[f(0) = \frac{1}{2}; \quad f\left(\frac{\pi}{2}\right) = -\frac{1}{2} \]
Change of sign \(0 < \alpha < \frac{\pi}{2} \)

(ii) \[
\begin{align*}
\frac{\cos x}{2x+1} &= \frac{1}{2} \\
2\cos x &= 2x + 1 \\
2\cos x - 1 &= 2x \\
or, \quad \cos x &= x + \frac{1}{2}
\end{align*}
\]
\[x = \cos x - \frac{1}{2} \]

\[x_1 = 0 \]
\[x_2 = 0.5 \]
\[x_3 = 0.378 \]

Question 7: Jan 2010 – Q2

(i) \[x_2 = 0.902 \]
\[x_3 = 0.941 \]

(ii) \[
\begin{tikzpicture}
\draw[->] (-2,0) -- (4,0) node[right] {x};
\draw[->] (0,-2) -- (0,4) node[above] {y};
\draw[thick] (-2,-2) -- (4,4);
\draw[thick] (-2,0) -- (0,0);
\draw[thick] (0,-2) -- (0,0);
\draw[thick] (2,-2) -- (2,2);
\draw[thick] (2,0) -- (2,2);
\draw[thick] (4,-2) -- (4,4);
\draw[thick] (4,0) -- (4,4);
\end{tikzpicture}
\]

Question 8: Jun 2010 – Q1

1(a) \[f(x) = 3^x - 10 + x^2 \] (or reverse)
\[f(1) = -6 \]
\[f(2) = 7 \]
Change of sign \(\therefore 1 < \alpha < 2 \)

OR

\[
\begin{align*}
\text{LHS} (1) &= 3 \\
\text{RHS} (1) &= 9 \\
\text{LHS} (2) &= 9 \\
\text{RHS} (2) &= 2 \\
\text{At 1} \quad \text{LHS} < \text{RHS}, \quad \text{At 2} \quad \text{LHS} > \text{RHS} \quad \therefore 1 < \alpha < 2
\end{align*}
\]

(b)(i) \[x^3 = 10 - x^3 \]
\[x^3 = 10 - 3^x \]
\[x = \sqrt[3]{10 - 3^x} \]

(b)(ii) \[x_1 = 1.913 \]
\[x_2 = 1.221 \]

Total 5